The Number of Graphs Not Containing K3, 3 as a Minor

نویسندگان

  • Stefanie Gerke
  • Omer Giménez
  • Marc Noy
  • Andreas Weißl
چکیده

We derive precise asymptotic estimates for the number of labelled graphs not containing K3,3 as a minor, and also for those which are edge maximal. Additionally, we establish limit laws for parameters in random K3,3-minor-free graphs, like the number of edges. To establish these results, we translate a decomposition for the corresponding graphs into equations for generating functions and use singularity analysis. We also find a precise estimate for the number of graphs not containing the graph K3,3 plus an edge as a minor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval minors of complete bipartite graphs

Interval minors of bipartite graphs were recently introduced by Jacob Fox in the study of Stanley-Wilf limits. We investigate the maximum number of edges in Kr,s-interval minor free bipartite graphs. We determine exact values when r = 2 and describe the extremal graphs. For r = 3, lower and upper bounds are given and the structure of K3,s-interval minor free graphs is studied.

متن کامل

Dense graphs have K3, t minors

Let K ∗ 3,t denote the graph obtained from K3,t by adding all edges between the three vertices of degree t in it. We prove that for each t ≥ 6300 and n ≥ t + 3, each n-vertex graph G with e(G) > 1 2 (t + 3)(n− 2)+ 1 has a K ∗ 3,t -minor. The bound is sharp in the sense that for every t , there are infinitely many graphs Gwith e(G) = 2 (t+ 3)(|V (G)|− 2)+ 1 that have no K3,t -minor. The result c...

متن کامل

The circumference of a graph with no K3, t-minor

The class of graphs with no K3,t-minors, t ≥ 3, contains all planar graphs and plays an important role in graph minor theory. In 1992, Seymour and Thomas conjectured the existence of a function α(t) > 0 and a constant β > 0, such that every 3-connected n-vertex graph with no K3,t-minors, t ≥ 3, contains a cycle of length at least α(t)n . The purpose of this paper is to confirm this conjecture w...

متن کامل

Graphs containing triangles are not 3-common

Jagger, S̆t̆ov́ıc̆ek and Thomason [3] defined the class of k-common graphs, and showed among other results that every graph containing K4 as a subgraph is not 2-common. We prove that every graph containing K3 as a subgraph is not 3-common.

متن کامل

A Characterization of Graphs with No Octahedron Minor

It is proved that a graph does not contain an octahedron minor if and only if it is constructed from {K1,K2,K3,K4}∪{C 2 2n−1 : n ≥ 3} and five other internally 4-connected graphs by 0-, 1-, 2-, and 3-sums.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008